skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roots, Cameron_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Foundational techniques in molecular biology—such as cloning genes, tagging biomolecules for purification or identification, and overexpressing recombinant proteins—rely on introducing non-native or synthetic DNA sequences into organisms. These sequences may be recognized by the transcription and translation machinery in their new context in unintended ways. The cryptic gene expression that sometimes results has been shown to produce genetic instability and mask experimental signals. Computational tools have been developed to predict individual types of gene expression elements, but it can be difficult for researchers to contextualize their collective output. Here, we introduce CryptKeeper, a software pipeline that visualizes predictions of Escherichia coli gene expression signals and estimates the translational burden possible from a DNA sequence. We investigate several published examples where cryptic gene expression in E. coli interfered with experiments. CryptKeeper accurately postdicts unwanted gene expression from both eukaryotic virus infectious clones and individual proteins that led to genetic instability. It also identifies off-target gene expression elements that resulted in truncations that confounded protein purification. Incorporating negative design using CryptKeeper into reverse genetics and synthetic biology workflows can help to mitigate cloning challenges and avoid unexplained failures and complications that arise from unintentional gene expression. 
    more » « less